LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

FIRST SEMESTER - NOVEMBER 2023

PCH 1503 - QUANTUM CHEMISTRY AND GROUP THEORY

Date: 06-11-2023 Dept. No. Max. : 100 Marks

Time: 01:00 PM - 04:00 PM

PART A

Answer ALL questions.

 $10 \times 2 = 20 \text{ marks}$

- 1. Write the limits for spherical polar coordinates.
- 2. Rigel, the brightest star in constellation Orion, has approximately a blackbody radiation spectrum with a maximum wave length of 145 nm. Estimate the surface temperature of Rigel.
- 3. Sketch Ψ and Ψ^2 for a particle in one dimensional box when n = 2.
- 4. Calculate the zero point energy of a particle of mass 9.1×10^{-31} kg in a cubical box of length 10 Å.
- 5. Obtain the ground state atomic term symbol for fluorine.
- 6. Mention the need for approximation method.
- 7. What is the order of D_{3h} point group?
- 8. Write the symbol for a two dimensional representation that is symmetric with respect to inversion, i.
- 9. Mention the significance of Secular determinant.
- 10. Whether the vibrations of 'u' modes are IR active? Account.

PART B

Answer any EIGHT questions:

 $8 \times 5 = 40 \text{ marks}$

- 11. State the postulates of quantum mechanics.
- 12. The work function of barium metal is 2.48 eV. If the light of 400 nm is shined on barium cathode, what is the maximum velocity of ejected electrons?
- 13. How distant the point, (6, 10°, 120°) is away from the origin?
- 14. Derive an expression for wave function and energy for a particle in a one dimensional box.
- 15. Prove that the operators of any one of the angular momentum components commute with the operator of the square of angular momentum (L^2) .
- 16. State and explain quantum mechanical tunnelling.
- 17. Show that the wave functions describing 1s orbital is normalized.

Given:
$$\Psi_{1s} = \frac{1}{\sqrt{\pi}} (\frac{Z}{a_0})^{\frac{3}{2}} e^{-\frac{Zr}{a_0}}$$

- 18. What is Born-Oppenheimer approximation? Mention its importance.
- 19. List down the symmetry elements and operations of CHCl₃ and HI molecules.
- 20. State and explain Great Orthogonality theorem.
- 21. Explain the three important approximations of Huckel LCAO-MO theory.
- 22. Using the following reducible representation for CH_4 molecule, determine its possible hybridization schemes. $\Gamma = 4$ 1 0 0 2. T_d character table is provided

reference.

for the

linear. E 8C3 3C2 6S4 6od quadratic rotations $x^2+y^2+z^2$ A₁ 1 1 1 1 -1 A2 1 1 1 -1 E 2 -1 2 0 $(2z^2-x^2-y^2, x^2-y^2)$ T_1 3 0 -1 -1 (R_x, R_y, R_z) 1 (x, y, z)(xy, xz, yz)

Character table for T_d point group

1

PART C

Answer any FOUR questions:

 $4 \times 10 = 40 \text{ marks}$

- 23. (a) Derive time independent Schrodinger wave equation.
 - (b) Find the value of 'A' if A $\cos \frac{n\pi}{a} x$ is a normalised function over the interval

$$-a \le x \le a$$
. (Hint: $2\cos^2 x - 1 = \cos 2x$) (6+4)

- 24. Write the Schrodinger equation to be solved for hydrogen atom and solve it for its energy using a simple solution, which assumes the wave function to depend only on the distance r and not on the angles θ and φ .
- 25. Describe the rigid rotor model and obtain an expression for the energy of the same.
- 26. State and explain the following: (i) Variation theorem
 - (ii) Pauli's exclusion principle (iii) Hohenberg Kohn theorem.

(4+3+3)

- 27. (a) Determine the symmetry operations and their classes for benzene molecule.
 - (b) Construct the character table for C_{3v} point group.

(4+6)

- 28. (a) Obtain the normalized trial wave functions and energies for bonding and antibonding orbitals of H₂ molecular ion.
 - (b) Deduce the IR active modes of vibrations of H_2O molecule. The C_{2v} character table is given below.

(5+5)

	E	C ₂ (z)	σ _v (xz)	σ _v (yz)	linear, rotations	quadratic
$\mathbf{A_1}$	1	1	1	1	z	x ² , y ² , z ²
A_2	1	1	-1	-1	R _z	xy
$\mathbf{B_1}$	1	-1	1	-1	x, R _y	XZ
B ₂	1	-1	-1	1	y, R _x	yz

&&&&&&&&&&&&&